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Abstract

We present a quantization scheme for a three-player Prisoner’s Dilemma game.
It is shown that entanglement plays a dominant role in the three-player quantum
game. Four different types of payoffs are identified on the basis of different
combinations of initial state and measurement basis entanglement parameters.
A relation among these different payoffs is also established. We also study
the communication aspects of the three-player game. By exploiting different
combinations of initial state and measurement basis entanglement parameters,
we establish a relationship for the information shared among the parties. It is
seen that the strategies of the players act as carriers of information in quantum
games.

PACS numbers: 02.50.Le, 03.65.Ud, 03.67.−a

1. Introduction

Recent development in quantum computation and quantum information theory [1, 2] prompted
the scope of game theory to extend it to the quantum world. Meyer [3] discussed a connection
between quantum games and quantum information processing. Most of the research on
quantum games has lacked a direct connection to quantum information processing. Quantum
game theory has been extensively studied by a number of authors in recent years [4–6]. The
role of the initial quantum state entanglement is an interesting feature in quantum games.
However, the importance of the payoff operators used by the arbiter to perform measurement
is also important as addressed in [7]. The authors have investigated the role of measurement
basis in quantum games by taking the two-player Prisoner’s Dilemma game as an example.
Lee et al [8] have studied the problem of quantum state estimation and quantum cloning using
a game-theoretic perspective.

The Prisoner’s Dilemma is a widely known example in classical game theory. The study
of multi-player quantum games could be of great importance from both a theoretical and
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a practical point of view, and can exhibit interesting results in comparison to two player
games. A model of a two-player Prisoner’s Dilemma quantum game was developed by Eisert
[9] in which the paradox in the classical Prisoner’s Dilemma was solved in a maximally
entangled state. Quantum Prisoner’s Dilemma has been experimentally demonstrated by
using a nuclear magnetic resonance (NMR) quantum computer [10]. Recently, Prevedel et al
have experimentally demonstrated the application of a measurement-based protocol to realize
a quantum version of the Prisoner’s Dilemma based on entangled photonic cluster states
and constituted the first realization of a quantum game in the context of one-way quantum
computing [11]. The investigations of multi-player and multi-choice quantum games [12–14]
and continuous-variable quantum games [15] have also been pursued in recent years.

With recent interest in quantum computing and quantum information theory, we explore
that quantum game theory may be useful for studying the quantum communication, since it
can be considered as a game where the objective is to maximize the effective communication.
Motivated from our recent paper on two player quantum games [16], we extend our work
here to the case of a three-player Prisoner’s Dilemma quantum game with the measuring basis
taken as entangled. Motivation of a three-player Prisoner’s Dilemma quantum game is that
more information can be carried by each party which may increase the communication of
information. Furthermore, this work may provide a better insight into the study of quantum
games from the quantum information and quantum communication perspective. Based on the
work discussed in [17, 18], we have attempted to relate the quantum game theory with quantum
information theory by investigating the communication aspects of a three-player Prisoner’s
Dilemma quantum game. Kawakami [17] has studied the communication and information
carriers in quantum games. He has shown that communications in quantum games can be
used to solve problems that cannot be solved by using communications in classical games.

In this paper, we present a quantization scheme for the three-player Prisoner’s Dilemma
game using an entangled measuring basis. We study the communication aspects of the
three-player Prisoner’s Dilemma game by using the players’ returns. Based on the flow
of information (communication) between players, as evident from the payoff matrix, we
establish a relationship for information shared among the parties, for different combinations
of initial state and measurement basis entanglement parameters γ ∈ [0, π/2] and δ ∈ [0, π/2]
respectively. Here, δ = 0 means that the measurement basis is unentangled, i.e. in a product
form and δ = π/2 means that it is maximally entangled. Similarly, γ = 0 means that the game
is initially unentangled and γ = π/2 means that it is maximally entangled. We show that
the strategies of the players and their payoffs act as information carriers between the players.
We establish a relationship among different payoffs on the basis of different combinations of
initial state and measurement basis entanglement parameters δ and γ respectively, as studied
in [7]. The relation among different quantum payoffs is similar to the relation among classical
capacities of the quantum channels [19]. In addition, we also establish a relationship among
the information shared between the parties for different combinations of initial state and
measurement basis entanglement parameters.

2. The three-player quantization scheme

The three-player Prisoner’s Dilemma game is similar to the two-player situation. In a three-
player Prisoner’s Dilemma game, the players are arrested under the suspicion of committing a
crime, say, robbing a bank. Similar to the two-player game, they are interrogated in separate
cells without communicating with each other. The two possible moves for each prisoner are,
to cooperate (C) or to defect (D). The payoff table for the three-player Prisoner’s Dilemma
game is shown in table 1 [13]. The game is symmetric for the three players, and the strategy
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Table 1. The payoff matrix for three-player Prisoner’s Dilemma where the first number in the
parenthesis denotes the payoff of Alice, the second number denotes the payoff of Bob and the third
number denotes the payoff of Charlie.

Charlie C Charlie D

Bob Bob

C D C D

C (3, 3, 3) (2, 5, 2) C (2, 2, 5) (0, 4, 4)
Alice Alice

D (5, 2, 2) (4, 4, 0) D (4, 0, 4) (1, 1, 1)

(D) dominates the strategy (C) for all the three players. Since the selfish players prefer to
choose (D) as an optimal strategy, the unique Nash equilibrium is (D,D,D) with payoffs
(1, 1, 1). This is a Pareto inferior outcome, since (C,C,C) with payoffs (3, 3, 3) would be
better for all three players. This situation is the very catch of the dilemma and is the same as
the two-player version of this game.

In our scheme, Alice, Bob and a third player, Charlie, join the game. In this game,
an arbiter prepares an initial quantum state and passes it on to the players. After applying
their strategies, the players return the state to the arbiter who then announces the payoffs by
performing a measurement. Let us suppose that the initial quantum state shared between the
three prisoners, consistent with [16, 20], is of the form

|ψin〉 = cos
γ

2
|000〉 + i sin

γ

2
|111〉, (1)

where 0 � γ � π/2 corresponds to the entanglement of the initial state. Here in this case
players can locally manipulate their individual qubits. The possible outcomes of the classical
strategies (C) and (D) are assigned the two basis vectors |0〉 and |1〉 in the Hilbert space. The
strategies of the players can be represented by the unitary operator Uk as defined in [16]

Uk = cos
θk

2
Rk + sin

θk

2
Pk, (2)

where k = A,B and C correspond to Alice, Bob and Charlie respectively and Rk, Pk are the
unitary operators defined as

RA|0〉 = eiαA |0〉 RA|1〉 = e−iαA |1〉
PA|0〉 = ei( π

2 −βA)|1〉 PA|1〉 = ei( π
2 +βA)|0〉

RB |0〉 = eiαB |0〉 RB |1〉 = e−iαB |1〉
PB |0〉 = ei( π

2 −βB)|1〉 PB |1〉 = ei( π
2 +βB)|0〉

RC |0〉 = eiαC |0〉 RC |1〉 = e−iαC |1〉
PC |0〉 = ei( π

2 −βC)|1〉 PC |1〉 = ei( π
2 +βC)|0〉,

(3)

where 0 � θk � π,−π � {αk, βk} � π. By the application of the local operators of the
players, the initial state given in equation (1) transforms to

ρf = (UA ⊗ UB ⊗ UC)ρin(UA ⊗ UB ⊗ UC)†, (4)

where ρin = |ψin〉〈ψin| is the initial density matrix for the quantum state. The operators used
by the arbiter to determine the payoffs for Alice, Bob and Charlie are

P k = $k
000P000 + $k

001P001 + $k
110P110 + $k

010P010

+ $k
101P101 + $k

011P011 + $k
100P100 + $k

111P111 (5)
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where

P000 = |ψ000〉〈ψ000|, |ψ000〉 = cos
δ

2
|000〉 + i sin

δ

2
|111〉

P111 = |ψ111〉〈ψ111|, |ψ111〉 = cos
δ

2
|111〉 + i sin

δ

2
|000〉

P001 = |ψ001〉〈ψ001|, |ψ001〉 = cos
δ

2
|001〉 + i sin

δ

2
|110〉

P110 = |ψ110〉〈ψ110|, |ψ110〉 = cos
δ

2
|110〉 + i sin

δ

2
|001〉

P010 = |ψ010〉〈ψ010|, |ψ010〉 = cos
δ

2
|010〉 − i sin

δ

2
|101〉

P101 = |ψ101〉〈ψ101|, |ψ101〉 = cos
δ

2
|101〉 − i sin

δ

2
|010〉

P011 = |ψ011〉〈ψ011|, |ψ011〉 = cos
δ

2
|011〉 − i sin

δ

2
|100〉

P100 = |ψ100〉〈ψ100|, |ψ100〉 = cos
δ

2
|100〉 − i sin

δ

2
|011〉

(6)

where 0 � δ � π/2 and $k
lmn are the elements of the payoff matrix as given in table 1. Since

quantum mechanics is a fundamentally probabilistic theory, the strategic notion of the payoff
is the expected payoff. The players after their actions that leave the game in a state given
in equation (4) forward their qubits to the arbiter for the final projective measurement, for
example, in the computational basis as given in equation (6), who determines their payoffs
(as shown in figure 1). The payoffs for the players can be obtained as the mean values of the
payoff operators

$k(θk, αA, βA) = Tr(P kρf ), (7)

where Tr represents the trace of the matrix. Using equations (1)–(7), the payoffs of the three
players are given by

$k(θk, αk, βk) = cAcBcC

[
η1$k

000 + η2$k
111 +

(
$k

000 − $k
111

)
ξ cos 2(αA + αB + αC)

]

+ sAsBsC

[
η2$k

000 + η1$k
111 − (

$k
000 − $k

111

)
ξ cos 2(βA + βB + βC)

]

+ cAcBsC

[
η1$k

001 + η2$k
110 +

(
$k

001 − $k
110

)
ξ cos 2(αA + αB − βC)

]

+ sAsBcC

[
η2$k

001 + η1$k
110 − (

$k
001 − $k

110

)
ξ cos 2(βA + βB − αC)

]

+ sAcBcC

[
η1$k

100 + η2$k
011 +

(
$k

100 − $k
011

)
ξ cos 2(αB + αC − βA)

]

+ cAsBsC

[
η2$k

100 + η1$k
011 − (

$k
100 − $k

011

)
ξ cos 2(βB + βC − αA)

]

+ sAcBsC

[
η1$k

101 + η2$k
010 +

(
$k

101 − $k
010

)
ξ cos 2(βA + βC − αB)

]

+ cAsBcC

[
η2$k

101 + η1$k
010 − (

$k
101 − $k

010

)
ξ cos 2(αA + αC − βB)

]

+ 1
8 (cos2(δ/2) − sin2(δ/2))

[
$k

000 − $k
111 − $k

001 + $k
110 − $k

010 + $k
101 + $k

011

− $k
100

]
sin(γ ) sin(θ1) sin(θ2) sin(θ3) cos(αA + αB + αC − βA − βB − βC)

+
[[

$k
000 − $k

111

]
sin(δ) sin(θ1) sin(θ2) sin(θ2) cos(αA + αB + αC

−βA − βB − βC) +
[
$k

110 − $k
001

]
sin(δ) sin

× (θ1) sin(θ2) sin(θ2) cos(αA + αB − αC + βA + βB − βC)

+
[
$k

010 − $k
101

]
sin(δ) sin(θ1) sin(θ2) sin(θ2) cos

× (αA − αB + αC + βA − βB + βC)
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Measurement 
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Figure 1. The schematic diagram of the procedure of the game.

+
[
$k

100 − $k
011

]
sin(δ) sin(θ1) sin(θ2) sin(θ2) cos

× (αA − αB − αC + βA − βB − βC)
]

× [
1
8 (cos2(γ /2) − sin2(γ /2))

]
(8)

where

η1 = cos2(γ /2) cos2(δ/2) + sin2(γ /2) sin2(δ/2)

η2 = sin2(γ /2) cos2(δ/2) + sin2(δ/2) cos2(γ /2)

ξ = 1

2
sin(δ) sin(γ )

5



J. Phys. A: Math. Theor. 42 (2009) 025301 M Ramzan and M K Khan

Table 2. The payoffs of the three players for γ = δ = 0 and γ = δ = π/2, for different Alice’s
operations, as obtained from equation (8).

UC(0) UC(π)

Alice’s unitary operation UB(0) UB(π) UB(0) UB(π)

UA(0, 0, 0) (3, 3, 3) (2, 5, 2) (2, 2, 5) (0, 4, 4)
UA(π/3, π/2, π/2) (3/4, 7/4, 7/4) (7/2, 1/2, 17/4) (7/2, 17/4, 1/2) (9/2, 9/4, 9/4)
UA(π/2, π/2, π/2) (1/2, 5/2, 5/2) (3, 1, 9/2) (3, 9/2, 1) (4, 5/2, 5/2)
UA(π, π, π) (5, 2, 2) (4, 4, 0) (4, 0, 4) (1, 1, 1)

ck = cos2 θk

2

sk = sin2 θk

2
. (9)

The payoffs for the three players can be found by substituting the appropriate values for $k
lmn

into equation (8). The elements of the classical payoff matrix for the Prisoner’s Dilemma
game are given in table 1. Our results are consistent with [13] and can easily be checked from
equation (8), when all the three players resort to their Nash equilibrium strategies.

3. Communication scenario

Let us start with an analysis of the communication aspects of the quantized Prisoner’s Dilemma
game. The communication aspect of quantum games is similar to the dense coding [21], in
the sense that, we can transmit two bits of classical information by sending only one qubit
with the help of entanglement while the sender and the receiver share an entangled quantum
state. Motivation of the three-player quantum game is that more information can be carried by
each party which may increase the information flux in comparison to the standard two-player
version of the Prisoner’s Dilemma game. Furthermore, the realization of the communication
is due to the advantage of quantum strategies and quantum entanglement. In our approach,
each prisoner has his/her private qubit and applies the unitary transformation to this. Their
arbiter gives a payoff to each of them based on a measured result of each qubit. Unitary
transformations are strategies for prisoners which play a key role in constructing the payoff
matrix. Here we consider that the strategies of prisoners are represented by the local operators
of Alice, Bob and Charlie as given in equation (2). Let Alice, Bob and Charlie agree on that
Alice performs the following four unitary operations out of the set UA (θA, αA, βA) , as given
in the below equation, on her qubit

UA(0, 0, 0) ⇒ 00

UA

(π

3
,
π

2
,
π

2

)
⇒ 01

UA

(π

2
,
π

2
,
π

2

)
⇒ 10

UA(π, π, π) ⇒ 11

(10)

where 00, 01, 10, 11 represent the exchange of two bits of information. In order to obtain the
classical payoff matrix, we consider the case of a restricted game, where Alice is allowed to
get benefit from the quantum phases whereas Bob and Charlie are restricted to doing so with
a fixed phase change by setting αB = αC = 0 and βB = βC = π/2. Thus, restricting Bob
and Charlie to only applying θB(C) = 0 or π as their set of strategies, utilizing which one can
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construct the classical payoff matrix for the three-player Prisoner’s Dilemma game as given
in table 1. As a result of measurement, Bob and Charlie can extract the information about the
strategy applied by Alice from their payoffs by a mutual understanding that they will apply
the same strategy, i.e. either θB(C) = 0 or θB(C) = π , such a cooperation between the users
can avoid corruption in quantum communication. Because, the application of the unitary
operators changes not only the value of a qubit, but also its phase (amplitude). This results
in a communication of two bits of information by two local one-qubit operations among the
parties (as seen from table 2).

For example, let Bob and Charlie apply θB(C) = 0, and gain the payoffs 2, 2 respectively
and they can easily find that the decision of Alice was UA (π, π, π) with payoff 5 as can be
seen from table 2. In this case, information which is exchanged between them through the
arbiter is represented as 2 bits, to determine one of the four possibilities.

4. Relationship between payoffs and information

Quantum payoffs can be divided into four different categories on the basis of four different
combinations of the initial state and measurement basis entanglement parameters γ and δ.
These different situations arise due to the possibility of having a product or entangled initial
state and then applying a product or entangled basis for the measurement [22, 23]. Here, we
will use the subscripts E and P which correspond to the entangled and product basis being
used for quantum payoffs respectively. The four different types of payoffs can be categorized
as

Case (a). When δ = γ = 0 (i.e. the initial quantum state used is in the product form, and
the product basis is used for measurement to determine the payoffs), the game becomes
classical and each player plays the strategy C, with probability cos2(θk/2) and the payoffs
for the players at the Nash equilibrium become

$k
PP (θk = π) = 1. (11)

Case (b). When γ = 0, δ �= 0 (i.e. the initial quantum state used is in the product form,
and the entangled basis is used for measurement to determine the payoffs) the players’
payoff remains less than 3 at the two Nash equilibria arising at θk = 0 and π/2 which
reads

$k
PE(θk = π/2, αA = π, βA = π) < 3 (12)

$k
PE(θk = 0, αA = π, βA = π) < 3. (13)

Case (c). When δ = 0, γ �= 0 (i.e. the initial quantum state is entangled, and the product
basis is used for measurement to determine the payoffs), the players’ payoff again remains
less than 3 at the two Nash equilibria and is given as

$k
EP (θk = π/2, αA = π, βA = π) < 3 (14)

$k
EP (θk = 0, αA = π, βA = π) < 3. (15)

Case (d). When γ = δ = π/2 (i.e. the initial quantum state is in an entangled form and
the entangled basis is used for measurement to determine the payoffs), the players’ payoff
can be obtained from

7
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Table 3. The payoffs of the three players for γ = 0, δ = π/2 and γ = π/2, δ = 0, for different
Alice’s operations, as obtained from equation (8).

UC(0) UC(π)

Alice’s unitary operation UB(0) UB(π) UB(0) UB(π)

UA(0, 0, 0) (2, 2, 2) (3, 5/2, 3) (3, 3, 5/2) (5/2, 3, 3)
UA(π/3, π/2, π/2) (17/8, 9/4, 9/4) (3, 21/8, 23/8) (3, 23/8, 21/8) (19/8, 11/4, 11/4)
UA(π/2, π/2, π/2) (9/4, 5/2, 5/2) (3, 11/4, 11/4) (3, 11/4, 11/4) (9/4, 5/2, 5/2)
UA(π, π, π) (5/2, 3, 3) (3, 3, 5/2) (3, 5/2, 3) (2, 2, 2)

$k
EE(θk, αA, βA) = cAcBcC

2

[(
$k

000 + $k
111

)
+

(
$k

000 − $k
111

)
ξ cos 2(αA)

]

+
sAsBsC

2

[(
$k

000 + $k
111

) − (
$k

000 − $k
111

)
ξ cos 2(βA)

]

+
cAcBsC

2

[(
$k

001 + $k
110

)
+

(
$k

001 − $k
110

)
ξ cos 2(αA)

]

+
sAsBcC

2

[(
$k

001 + $k
110

) − (
$k

001 − $k
110

)
ξ cos 2(βA)

]

+
sAcBcC

2

[(
$k

100 + $k
011

)
+

(
$k

100 − $k
011

)
ξ cos 2(βA)

]

+
cAsBsC

2

[(
$k

100 + $k
011

) − (
$k

100 − $k
011

)
ξ cos 2(αA)

]

+
sAcBsC

2

[(
$k

101 + $k
010

)
+

(
$k

101 − $k
010

)
ξ cos 2(βA)

]

+
cAsBcC

2

[(
$k

101 + $k
010

) − (
$k

101 − $k
010

)
ξ cos 2(αA)

]
. (16)

The payoffs when the three players play their Nash equilibrium strategies become

$k
EE(θk = 0, αA = π, βA = π) = 3. (17)

From the above four cases one can establish the following relation among the four payoff
values as

$k
PP < $k

PE = $k
EP < $k

EE (18)

at the Nash equilibrium.
Furthermore, for the above four cases, we construct the payoff matrix as obtained from

equation (8) for Alice’s four unitary operations as given in equation (10). For γ = δ = 0
and γ = δ = π/2, the payoff matrix can be obtained from equation (8) as given in table 2;
whereas for γ = 0, δ = π/2 and γ = π/2, δ = 0, the payoff matrix can be obtained from
equation (8) as given in table 3. We can determine the payoff which is given to each prisoner
on the basis of his strategy from equation (8). We can see from equations (3) and (10) that each
strategy can be distinguished from the set UA(θA, αA, βA), UB(θB) and UC(θC). It is assumed
that the two parties Bob and Charlie have a mutual agreement with each other that they will
apply the same strategy in order to find out the strategy applied by Alice. Let Bob and Charlie
apply θB(C) = π , and gain the payoffs 4, 4 respectively, then they can find that the decision
of Alice was UA(0, 0, 0) with payoff 0 as seen from table 2. In this way, they can find all the
four strategies applied by Alice from their payoffs, which results in an information exchange
between the parties through the arbiter. However, for γ = 0, δ = π/2 and γ = π/2, δ = 0,

half of the information is lost because the phase information vanishes due to the overlapping
of half of the entries of the payoff matrix as seen from table 3. So there is one half probability
of finding out exactly the strategy applied by Alice.

8
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Therefore, from tables 2 and 3 we see that Bob and Charlie can find the unitary operators
applied by Alice from their payoffs against their common strategy. As a result, there is
a communication of two bits of information by two local one-qubit operations among the
three parties (as seen from table 2). However, we can see from table 3 that the information
shared between the parties is halved because there is one half probability of finding the exact
strategy of Alice. Thus, we can establish a relationship among the amounts of information
communicated between the parties as

{IPP = IEE} > {IPE = IEP } (19)

The above relation holds for the set of Alice’s four unitary operations under the bound that
Bob and Charlie are restricted to play a common move.

5. Conclusion

We present a quantization scheme for the three-player Prisoner’s Dilemma game using
entangled measuring basis. We show that entanglement plays a dominant role in a three-
player quantum game. We study the communication aspects of a three-player quantum game
which is similar to the dense coding where two bits of classical information can be transmitted
by the sender. It is seen that three-player quantum games are advantageous in the sense
that more information can be carried by the players, thus enhancing the information flux in
comparison to the two-player games. It can be seen that the communication is due to the
advantage of quantum entanglement and quantum strategies. We investigate that the strategies
of the players act as information carriers in quantum games. We identify four different payoffs
on the basis of different combinations of initial state and measurement basis entanglement
parameters. A relation among these different payoffs is also established. Exploiting different
combinations of initial state and measurement basis entanglement parameters, we establish a
relationship for the information shared among the parties.
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